加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

科学家获得光控增强和热电子光电流快速稳定的Au/TiO2全光输入晶体管

2021-09-15 合肥物质科学研究院
【字体:

语音播报

  近期,中国科学院合肥物质科学研究院固体物理研究所科研人员在可见-近红外光电探测研究方面取得进展,获得了光控增强和热电子光电流快速稳定的Au/TiO2全光输入晶体管。相关结果发表在Journal of Physical and Chemistry C上。

  前期,固体所科研人员提出了一种新型的晶体管——多孔的Ag/TiO2全光输入晶体管。与传统的光电晶体管利用电驱动来控制光电流不同,该晶体管采用一束紫外光来调控由近红外光照射而激发的热电子光电流。通过控制紫外光的功率密度,使近红外光产生的电信号提高数倍至百倍。但当紫外光打开或关闭时,晶体管的光电流增强和恢复过程极其缓慢,需要近十分钟才能稳定,且晶体管的制造工艺复杂、重复性差,限制了全光输入晶体管的应用。

  基于此,团队科研人员采用简单的溶胶凝胶法制备了致密的TiO2薄膜并构筑了Au/TiO2全光输入晶体管。该晶体管引入紫外光PG来调节近红外光PS激发的热电子光电流。通过采用不同功率密度的紫外光对红外光产生的热电子电流进行调控,红外光激发的热电子电流被放大十几倍,同时,响应速度显著提升。

  进一步研究表明,这主要是因为红外光产生的热电子电流受到了Au和TiO2之间肖特基势垒的阻挡,导致光电流较小。紫外光可以在TiO2中激发带间跃迁,产生电子-空穴对,促使TiO2表面吸附的氧发生脱附,从而降低Au与TiO2之间的肖特基势垒高度,促使更多的热电子越过势垒,形成光电流。另一方面,紫外光激发的光生载流子填充TiO2中的陷阱,减少了陷阱对热电子的捕获,因此响应速度明显提升。

  此外,研究发现,改变紫外光的功率密度可以改善热电子电流的稳定过程,适当增大会促使光电流迅速达到稳定状态。该工作有望推进具有放大、开关、调制功能的全光输入晶体管的实用化进程。

  上述研究得到国家自然科学基金项目的资助。

  论文链接

打印 责任编辑:任霄鹏

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn