加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

沈阳自动化所加热炉优化控制研究取得进展

2020-11-02 沈阳自动化研究所
【字体:

语音播报

  冶金行业能源消耗较大,是推进节能降耗的重点行业。高炉热风炉和加热炉等装置是节能降耗的关键环节,其燃烧控制与优化问题是国内外专家学者研究与关注的重点。

  中国科学院沈阳自动化研究所科研团队以加热炉的优化控制为切入点,提出一种基于迁移学习的加热炉炉温预测算法。实现加热炉的优化控制,要克服加热炉生产过程中原料来源多样、生产条件多变、工况波动频繁等难题,对加热炉各个加热区的温度精准预测。同时,还需要满足工况对实时性的要求,对预测算法的计算效率和计算时间等性能指标提出更高的要求。

  为了应对这些挑战,研究团队设计出基于时间卷积网络和迁移学习技术的多区炉温预测框架,并通过生成对抗网络来提升预测精度,建立实时的炉温预测模型。实例研究表明,团队提出的基于迁移学习的炉温预测框架在每个加热区快速建模的基础上均能提升预测精度。

  相关研究成果发表在Sensors上,该研究为人工智能技术应用于冶金行业加热炉能耗优化控制提供新方法。

基于迁移学习的炉温预测框架

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn