加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 每日科学

质子“高速公路”破解燃料电池百年挑战

2020-07-13 中国科学报 温才妃 胡守庚
【字体:

语音播报

  中国地质大学(武汉)燃料电池创新研究团队首次通过半导体异质界面电子态特性,把质子局域于异质界面,设计和构造出具有最低迁移势垒的质子通道,从而助推超质子,获得优异电导率。相关研究成果近日发表于《科学》。中国地质大学(武汉)材料与化学学院副教授吴艳为第一作者,教授朱斌和副研究员宋怀兵为共同通讯作者。

  燃料电池是继水力发电、热能发电和原子能发电之后的第四种发电技术。其洁净、高效、无污染的特点越来越引起关注。燃料电池技术成为国家能源发展战略的一个重点领域,高离子电导率的电解质开发是解决目前燃料电池应用问题的关键。

  长期以来,提高电解质离子电导率的方法是通过低价阳离子取代高价阳离子,如掺杂三价铱离子取代结构的四价锆离子,产生氧空位,进而提高氧离子电导率。但是,结构掺杂的方法无法有效解决燃料电池电解质面临的百年挑战,很大程度上阻碍了燃料电池的商业化进程。

  在传统质子传导材料里,质子需要克服巨大的能垒,通过氧空位跳跃前行。本研究相当于给质子“修建高速公路”,即利用半导体异质界面场诱导金属态,助推超质子又快又好地“跑起来”,从而获得优异电导率。这与传统电解质材料电导率相比,提升了3个数量级,并且实现了先进质子陶瓷燃料电池的示范。

  该研究成果为优良质子传输材料和应用提供了创新思路,为质子限域传输提供了科学方法,将促进新一代燃料电池研究和发展。

  相关论文信息:https://doi.org/10.1126/science.aaz9139

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn